Griliches Lectures

Lecture 3

Rachel Griffith

Singapore, July 2022

Motivation

Policy has the potential to improve welfare when consumption generates social costs; applies to "sin goods" - tobacco, alcoholic drinks, sugary drinks and other unhealthy foods (such as fast food)

- this motivates corrective taxes and regulations to availability, advertising, reformulation
- social costs include
- externalities: second hand smoking, alcohol related crime, healthcare costs due to rising obesity
- internalities: poor performance at school, future poor health, worse social and economic outcomes
- role of policy is to discourage socially costly consumption

Motivation

How effective are policies

- what the direct and indirect effects of policies?
- do they discourage socially costly consumption?
- what are the welfare implications? who gains and who loses?
- could we design better policies, that discourages socially cost consumption at lower cost?

Empirical approaches to learn about these questions ex ante

Plan of the lectures

Lecture 1

- what are the effects of sin taxes?
- empirical approaches to estimate suitably flexible demand models

Lecture 2

- what are the effects of restrictions to advertising?
- empirical approaches to estimate suitably flexible demand models
- evaluating welfare with possible behavioural effects

Lecture 3

- how do taxes and advertising interact?
- empirical approaches to learn about supply side dynamics

Motivation

Taxes are commonly levied on sin goods

- Alcohol, tobacco, sugary drinks ...

These markets typically

- have a few large multiproduct firms that sell differentiated products and often spend a lot on advertise
- advertising potentially affects demand both contemporaneously and into the future

Firms may respond to taxes by adjusting their advertising expenditures, meaning the introduction of a tax can have dynamic effects on the market equilibrium

- how important? what impact on the effectiveness of policy?

Abi-Rafeh, Dubios, Griffith and O'Connell (2023) "The effects of sin taxes and advertising restrictions in a dynamic equilibrium "

Abi-Rafeh, Dubios, Griffith and O'Connell (2023)

What is impact of tax, allowing for firms' advertising response?
How does a tax compare to advertising restrictions?

- build dynamic oligopoly model of firms' optimal price and advertising decisions
- show how role of advertising agencies reduces action space in dynamic game making it tractable to solve model
- estimate empirical model, use to compare effects of specific and ad valorem taxes and restrictions to advertising

Setting: cola segment of UK drinks market

How do we expect tax and advertising to interact

To gain intuition consider a simple monopoly example:

- Demand $Q(p, A) ; \mathrm{p}$: price, A: advertising
- Marginal cost $C=$

- Cost of advertising: k
- The monopolist chooses price and advertising to

$$
\max _{p, A}\{\underbrace{(p-C)}_{\text {markup }: \mu} Q(p, A)-k A\}
$$

- the optimal advertising choice equates marginal revenue and cost

$$
\mu Q_{A}(p, A)=k
$$

How will monopolist change advertising?

- assume monopolist has fixed margin
- tax increases price, firm moves up demand curve; if consumers more (less) responsive to advertising at this point then firm raises (lowers) advertising
- if monopolist also adjusts margin (price is a choice)
- a second force at play; if firm raises its margin this increases the profitability of the marginal consumer and, all else equal, incentivises the firm to raise advertising (and visa versa)

Fixed margin monopolist

Quantity

How will monopolist change advertising?

- assume monopolist has fixed margin
- tax increases price, firm moves up demand curve; if consumers more (less) responsive to advertising at this point then firm raises (lowers) advertising
- if monopolist also adjusts margin (price is a choice)
- a second force at play; if firm raises its margin this increases the profitability of the marginal consumer and, all else equal, incentivises the firm to raise advertising (and visa versa)

Margin adjustment

Quantity

More generally ...

In simple monopoly example impact of tax on advertising depends on

- How sensitivity of demand to advertising changes along demand curve
- How tax impacts profitability of marginal consumer

In differentiated product oligopoly there will be additional forces:

- Dynamic effects due to long-last impact of advertising
- Multi-product firm with only subset of products subject to tax
- Competitors' actions will impact the firm's profits

For latter two, whether advertising steals market market share or leads to positive spillovers will be key

Model overview

Study the UK cola market

- Firms choose prices and advertising budgets
- advertising affect demand today and into the future so that firm's choice is dynamic
- Advertising agencies act as intermediaries, choosing advertising spots
- Reduce firms' problem from decision over 1000s of advertising spots, to tractable decision over advertising budget
- Consumers choose which (if any) product to buy
- Their choice is influenced by their stock of advertising exposure
- Depends on their TV viewing habits and placement of advertising spots

Purchase data

Kantar Purchase Panel

- household level scanner data, 2010-16
- households record all grocery transactions
- prices, quantities and characteristics at the household and product level
- longitudinal (follow the same households over time)
- facilitates modeling consumer preference heterogeneity
- includes information on TV viewing behavior of household

The cola market: firms and brands

Firm	Brand	Market share	No. of products	Average price (£per liter)
Coca Cola Enterprises	Regular Coke	25.9%	15	0.82
	Diet Coke	34.8%	15	0.81
Pepsico	Regular Pepsi	7.6%	3	0.72
	Diet Pepsi	25.8%	5	0.73
	Regular store	2.4%	2	0.21
	Diet store	3.5%	2	0.21
All		100%	42	0.74

Advertising data

TV adverts from AC Nielsen

- Spot level data on all TV adverts over 2009-16
- over 1m adverts for cola (Coca Cola and Pepsi)
- Details of what was advertised, time slot, station, show
- Plus advertising expenditure

Broadcaster Audience Research Board (BARB)

- Measure of advertising impressions for all adverts in 2015

Individual level advertising exposure

Exposure of individual i to advertising of brand b in week t is:

$$
a_{i b t}=\sum_{k \mid t(k)=t} w_{i k} f\left(T_{b k}\right)
$$

where k is slot, $w_{i k}$ is probability of viewing slot $k, T_{b k}$ is advert duration and $f($.$) is a concave function$

- households asked whether they "regulary", "sometimes", "hardly ever", "never" watch most popular TV shows and alls stations and times
- use BARB data on population viewing in 2015 to estimate probability corresponding to each answer to get \hat{w}

Estimation of $w_{i k}$

Match between houshold media data (Kantar) and advert data (AC Nielsen)

Match	No. ads	$\%$
Show	209,733	20
Station + time slot	483,180	46
Time slot only	352,267	34
Total	$1,045,180$	100

Match in 2015 with BARB data

			Expenditure (£)	
Match	No. ads	Mean TVR	Mean per ad	Sum
Show	35,481	.05337	214	$7,584,502$
Station + time slot	77,083	.01700	105	$8,104,405$
Time slot only	62,270	.00068	13	833,836

TVR: television rating values
We use the match with BARB to estimate \hat{w}

Brand advertising expenditure

Expenditure on brand b advertising in week t is:

$$
e_{b t}=\sum_{k \mid t(k)=t} \rho_{k} T_{b k}
$$

where ρ_{k} is the price of advertising during slot k

Monthly advertising expenditure

Monthly advertising expenditure

Model overview

Study the UK cola market

- Consumers choose which (if any) product to buy
- choice is influenced by their stock of advertising exposure
- depends on their TV viewing habits and placement of advertising spots
- Firms choose prices and advertising budgets
- advertising affect demand today and into the future so that firm's choice is dynamic
- Advertising agencies act as intermediaries, choosing advertising spots
- Reduce firms' problem from decision over 1000s of advertising spots, to tractable decision over advertising budget

The consumer's decision

Advertising today can affect consumers' choices into the future
Consumers accumulate stock of advertising exposure to each brand b :

$$
\mathcal{A}_{i b t}=g\left(a_{i b 0}, a_{i b 1}, \ldots, a_{i b t-1}\right)
$$

Vector of consumer exposure stocks across brands

$$
\mathcal{A}_{i t}=\left(\mathcal{A}_{i 1 t}, \ldots, \mathcal{A}_{i B t}\right)
$$

the set of exposure stocks across consumers

$$
\mathcal{A}_{t}=\left\{\mathcal{A}_{i t}\right\}_{i \in I}
$$

The consumer's decision

Choose among products $j=\{0, \ldots, J\}$, decision utility from product j :

$$
U_{i j t}=u\left(\mathcal{A}_{i t}, p_{j t}, \mathbf{x}_{j t} ; \theta_{i}\right)+\epsilon_{i j t}
$$

where p : price, \mathbf{x} are product attributes, θ preferences, and $\epsilon_{i j t}$ an iid extreme value shock

The (i, j, t) choice probability is:

$$
s_{i j t}=\frac{\exp \left(V\left(\mathcal{A}_{i t}, p_{j t}, x_{j t} ; \theta_{i}\right)\right)}{\exp \left(V\left(\theta_{i}\right)\right)+\sum_{j^{\prime}=1}^{J} \exp \left(V\left(\mathcal{A}_{i t}, p_{j^{\prime} t}, x_{j^{\prime} t} ; \theta_{i}\right)\right)}
$$

The firm's decision

Firm choose prices and advertising expenditures
Firm f 's flow profits take the form:

$$
\pi_{f}\left(\mathcal{A}_{t}, \mathbf{p}_{\mathbf{t}}, \mathbf{e}_{\mathbf{t}}\right)=\sum_{j \in \mathcal{J}_{f}}\left(p_{j t}-c_{j t}\right) s_{j t}\left(\mathbf{p}_{t}, \mathcal{A}_{t}\right) M_{t}-\sum_{b \in \mathcal{B}_{f}}\left(1+\psi_{b}\right) e_{b t}
$$

- $c_{j t}$: product j marginal cost
- ψ_{b} : advertising agency mark-up
- M_{t} : size of market
- $e_{b t}$: expenditure on advertising brand b
market share for product $j>0$
$s_{j t}\left(\mathbf{p}_{\mathbf{t}}, \mathcal{A}_{t}\right)=\iint \frac{\exp \left(V\left(\mathcal{A}_{i t}, p_{j t}, x_{j t} ; \theta_{i}\right)\right)}{\exp \left(V\left(\theta_{i}\right)\right)+\sum_{j^{\prime}=1}^{J} \exp \left(V\left(\mathcal{A}_{i t}, p_{j^{\prime} t}, x_{j^{\prime} t} ; \theta_{i}\right)\right)} d F\left(\theta_{i}, \mathcal{A}_{i t}\right)$

The firm's decision - pricing

We assume that

- firms simultaneously set prices to maximize profit (conditional on the distribution of advertising exposure stocks)
- prices directly impact current but not future flow profits firm f 's first order condition for period t prices is:

$$
s_{j t}\left(\mathbf{p}_{t}, \mathcal{A}_{t}\right)+\sum_{j^{\prime} \in \mathcal{J}_{f}}\left(p_{j^{\prime} t}-c_{j^{\prime} t}\right) \frac{\partial s_{j^{\prime} t}\left(\mathbf{p}_{t}, \mathcal{A}_{t}\right)}{\partial p_{j t}}=0
$$

We assume prices are set in a Bertrand-Nash equilibrium, such that the set of price first order conditions hold for all f

The firm's decision - advertising

Firms simultaneously choose advertising budgets, $e_{b t}$, to maximize profits

- advertising has lasting effects into the future, so the problem is dynamic

Re-write the flow profit,

$$
\tilde{\pi}_{f}\left(\mathcal{A}_{t}, \mathbf{e}_{t}\right) \equiv \pi_{f}\left(\mathcal{A}_{t}, p_{j t}^{*}\left(\mathcal{A}_{t}\right), \mathbf{e}_{\mathbf{t}}\right)
$$

where $p_{j t}^{*}\left(\mathcal{A}_{t}\right)$: optimal price given advertising exposure stocks
Firm's intertemporal profits,

$$
\sum_{t=0}^{\infty} \beta^{t} \tilde{\pi}_{f}\left(\mathcal{A}_{t}, \mathbf{e}_{t}\right)
$$

The firm's decision - advertising

We focus on Markov strategies

- for firm f, a strategy σ_{f} is a mapping between the current advertising exposure stock distribution and advertising expenditure for the brands it owns, $\sigma_{f}\left(\mathcal{A}_{t}\right) \equiv\left(\left\{e_{b t}\right\}_{b \in \mathcal{B}_{f}}\right)$
- each firm chooses its strategy given beliefs about competitors' strategies
- in a Markov Perfect Equilibrium, firms' beliefs are mutually compatible Given other firms' strategies $\sigma_{-f}\left(\mathcal{A}_{t}\right)$, firm f solves the Bellman equation:

$$
\pi_{f}^{*}\left(\mathcal{A}_{t}\right)=\max _{\left\{e_{b t}\right\}_{b \in \mathcal{B}_{f}}} \tilde{\pi}_{f}\left(\mathcal{A}_{t}, \mathbf{e}_{t}\right)+\beta \pi_{f}^{*}\left(\mathcal{A}_{t+1}\right)
$$

Oligopoly competition in price and advertising

- Dynamic oligopoly game because advertising has lasting impact on consumers preferences
- Action space for each multiproduct firm: prices of all products, advertising spots by brand on all TV channels, day, program and time of the day, by 30 seconds spot
- State space for each multiproduct firm: all actions (prices, ads, ..) of all firms in the past, current marginal costs and demand shocks
\rightarrow huge action and state spaces prohibit considering the estimation of Markov Perfect Equilibrium strategies of this dynamic game mapping state space to action space for each firm
- Unlikely (impossible) that firms solve such problem
- Firms use advertising agencies as intermediary to choose ad spots

The advertising agency

Firms delegate their choice of advertising slots to an advertising agency

- agency chooses slots to maximize exposure given a budget constraint This captures important feature of the advertising market, and reduces firms' action space so dynamic oligopoly game is tractable

The agency chooses the set of slots, $T_{b k}$, to solve:

$$
\begin{array}{r}
\max _{\left\{T_{b k}\right\}_{k}} \sum_{i} \phi_{g(i) b} a_{i b t} \\
\text { s.t. } \sum_{\{k \mid t(k)=t\}} \rho_{k} T_{b k} \leq e_{b t} .
\end{array}
$$

where $\phi_{g(i) b}$ is the weight the firm assigns to the exposure of consumers belonging to demographic group g, and ρ_{k} is the price of advertising during slot k

The advertising agency

The first order condition of the agency's problem implies that the ratio of total marginal impacts during two advertising slots, k and k^{\prime}, is set equal to the ratio of the price of advertising during these slots:

$$
\frac{\sum_{i} \phi_{g(i) b} w_{i k} f^{\prime}\left(T_{b k}\right)}{\sum_{i} \phi_{g(i) b} w_{i k^{\prime}} f^{\prime}\left(T_{b k^{\prime}}\right)}=\frac{\rho_{k}}{\rho_{k^{\prime}}} .
$$

- concavity of $f($.$) means T_{b k}^{*}$ is a decreasing function of the price per viewer during slot $k, \frac{\rho_{k}}{\sum_{i} \phi_{g(i) b} w_{i k}}$
- we assume $f\left(T_{b k}\right)=T^{\gamma}$, agency problem implies log-linear relationship between price per impression and advert length (conditional on brand-time fixed effects)
- use BARB data to estimate $\hat{\gamma}=0.642 \quad$ (0.001)

Demand specification

We specify the form of the decision utility

- important that specification is rich enough to capture heterogeneity in different consumers responses to variation in price and advertising, how these responses are correlated, and how the impact of advertising of one product might affect demand of other products

We estimate the demand model separately by 12 demographic groups, denoted $d(i)$, based on the household type (household with children, working age household with no children, pensioner household) and within household type income quartiles

Our motivation for this is to control for demographic attributes advertisers may target

Demand specification

Decision utility function for advertised goods (Coca Cola and Pepsi):

$$
\begin{aligned}
U_{i j t}=\alpha_{i} p_{j r(i, t) t}+\beta_{i}^{O} \sinh ^{-1}(& \left(A_{i b(j) t}\right)+\beta_{d(i)}^{w} \sinh ^{-1}\left(A_{i-b(j) t}\right)+\beta_{d(i)}^{X} \sinh ^{-1}\left(A_{i-f(j) t}\right) \\
& +\gamma_{i} \operatorname{Sug}_{j}+\phi_{d(i)} \mathbf{Z}_{i f(j)}+\eta_{i b(j)}+\chi_{j}+\xi_{b(j), \tau(t)}+\zeta_{b(j), r(i, t)}+\epsilon_{i j t}
\end{aligned}
$$

three distinct effects of advertising on decision utility:

- an own-brand advertising effect, β_{i}^{O}
- a within-firm spillover effect, $\beta_{d(i)}^{W}$
- a cross-firm spillover effect, $\beta_{d(i)}^{X}$
advertising stock enters through inverse-hyperbolic sine function to capture diminishing returns of advertising exposure

Demand specification

Decision utility also depends on

- whether the product contains sugar $\left(\mathrm{Sug}_{j}\right)$
- TV viewing behavior interacted with firm, $\mathbf{Z}_{\text {if }(j)}$
- consumer specific brand valuations, $\eta_{i b(j)}$
- product effects, χ_{j}
- time (year-quarter) varying brand effects, $\xi_{b(j), \tau(t)}$
- retailer varying brand effects, $\zeta_{b(j), r(i, t)}$
consumer specific preference coefficients on price, own-brand advertising, sugar and the brand effects
important to capture consumer substitution pattern across products

Advertising exposure

We assume consumers accumulate stock of advertising exposure to each brand b :

$$
A_{i b t}=\sum_{s=0}^{t-1} \delta^{t-1-s} a_{i b s}=\delta A_{i b t-1}+a_{i b t-1}
$$

specification implies exposure to brand advertising two weeks ago contributes δ as much to the current stock of exposure as the same amount of exposure one week ago

We set $\delta=0.9$

Identification of advertising effects

We control for

- brand-time-demographic group effects
- individual average viewing behavior for
- weekly hours of viewing
- genres: game shows, documentaries, drama, reality TV, sport and entertainment
- stations
- weekday/weekend \times time slot
- all interacted with brand

Isolate differences in individual advertising exposure driven by variation in slots within demographic groups and show genre

Identification of advertising effects

Example

(a) X Factor

(b) Britain's Got Talent

Identification of advertising effects

Example
(a) Frasier

(b) Everybody Loves Ramond

Preference distribution

We include random coefficients on price, own advertising, brand, sugary and outside option

- Model as joint normal, conditional on demographic group

Allow for correlation in preferences over price and advertising

- Allows for flexibility in cross derivative of market demand

Longitidunal micro data helps us pin down preference distribution

- For instance, all else equal, the higher the correlation in the price of chosen options within individual over time, the higher the implied spread parameter on price

Brand price and advertising elasticities

impact of 1% increase in price/stock of exposure of brand in row on demand for brand in column

	Price elasticities						Advertising elasticities		
	Coke		Pepsi			Coke	Pepsi		
	Regular	Diet	Regular	Diet		Regular	Diet	Diet	
Regular Coke	$\mathbf{- 2 . 2 1 0}$	0.511	0.050	0.092		$\mathbf{0 . 1 1 5}$	0.043	0.020	
Diet Coke	0.378	$\mathbf{- 2 . 1 9 2}$	0.023	0.142		0.054	$\mathbf{0 . 1 1 0}$	0.016	
Regular Pepsi	0.210	0.128	$\mathbf{- 1 . 8 4 2}$	0.552		0.021	0.020	0.015	
Diet Pepsi	0.110	0.232	0.157	$\mathbf{- 1 . 6 7 9}$		0.015	0.011	$\mathbf{0 . 0 5 7}$	
Regular Store	0.243	0.155	0.063	0.106		-0.021	-0.017	-0.011	
Diet Store	0.130	0.276	0.031	0.170		-0.020	-0.021	-0.012	
Regular outside	0.185	0.138	0.050	0.095		-0.020	-0.017	-0.009	
Diet outside	$\mathbf{0 . 1 0 4}$	0.236	0.027	0.152		-0.019	-0.021	-0.011	

Impact of Regular Coke price level on advertising elasticity

illustrates the importance of allowing for correlation between price and advertising sensitivity

Dynamic supply-side

- Definition of state space Details
- State-to-state transition function
- Solve for Markov perfect equilibrium

Counterfactual policy simulations

1 Solve for dynamic equilibrium with no policy in place

2 Simulate counterfactual equilibria

- ban on advertising sugary colas (Coca Cola and Pepsi)
- two alternative taxes applied to sugar-sweetened products
- Volumetric tax: $p_{c}=p_{f}+\tau_{s} \times$ volume, with $\tau_{s}=£ 0.25 /$ liter
- Ad valorem tax: $p_{c}=p_{f} \times\left(1+\tau_{a d}\right)$, with $\tau_{\text {ad }}$ chosen to achieve same consumption reduction as under volumetric tax (holding advertising fixed)

Variation in Regular Coke Nash equilibrium

with Coca Cola advertising states
Price-cost margin
figure shows that Regular Coke margins are decreasing in the Regular Coke advertising state; this reflects the negative correlation in advertising and price sensitivity

Optimal policy function for Coca Cola Enterprises

model yields functions describing how equilibrium objects, such as prices, quantities, gross profits and advertising expenditures vary across the advertising states
denote one of these functions $y\left(\{\mathbb{A}\}_{b}\right)$
and an equilibrium probability distribution across states, $p\left(\{\mathbb{A}\}_{b}\right)$
The average equilibrium outcome is then given by $\bar{Y}=\int_{\{\mathbb{A}\}_{b}} y\left(\{\mathbb{A}\}_{b}\right) p\left(\{\mathbb{A}\}_{b}\right)$

Optimal policy function for Coca Cola Enterprises

Advertising expenditure

Dark grey surface is Regular, lighter (red) surface is Diet Coca Cola

Equilibrium probability distribution for Coca Cola Enterprises

Regular Coke adv. state

Aggregate impact of Advertising restriction

Δ quantity	Regular	-7.2%
	Diet	-2.8%
Δ price	Regular	0.4%
	Diet	-0.5%
Δ margin	Regular	0.9%
	Diet	-1.0%
Δ adv. exp.	Regular	-100.0%
	Diet	-16.2%
Δ profits		-1.2%
Compensating variation		-2.8%
Tax revenue		-
Δ surplus		-4.0%

Aggregate impact of Specific tax

Fixed adv. Incremental effect of

		Eq. adv. response	Adv. restrict.	
Δ quantity	Regular	-59.7%	-1.1%	-2.8%
	Diet	11.8%	-1.7%	-4.1%
Δ price	Regular	33.0%	0.1%	0.3%
	Diet	-1.4%	-0.1%	-0.3%
Δ margin	Regular	6.0%	0.2%	0.7%
	Diet	-2.9%	-0.2%	-0.7%
Δ adv. exp.	Regular	-	-56.8%	-100.0%
	Diet	-	-19.5%	-29.9%
Δ profits		-1.2%	-6.8%	-0.0%
Compensating variation		-2.8%	-7.6%	-1.0%
Tax revenue	-	4.7%	-0.1%	
Δ surplus		-4.0%	-9.7%	-1.2%

Aggregate impact of Ad valorem tax

Fixed adv. Incremental effect of

			Eq. adv. response	Adv. restrict.
Δ quantity	Regular	-59.5%	-1.6%	-2.8%
	Diet	11.4%	-2.9%	-4.6%
Δ price	Regular	43.0%	0.1%	0.2%
	Diet	-1.4%	-0.1%	-0.3%
Δ margin	Regular	-37.8%	0.1%	0.3%
	Diet	-2.9%	-0.3%	-0.6%
Δ adv. exp.	Regular	-	-80.0%	-100.0%
	Diet	-	-37.2%	-43.8%
Δ profits		-10.4%	-0.0%	-0.5%
Compensating variation		-7.6%	-1.6%	-2.7%
Tax revenue	7.7%	-0.3%	-0.5%	
Δ surplus	-10.3%	-2.0%	-3.7%	

Aggregate impact of counterfactual policies

		Adv. restrict.	Specific tax	Ad valorem tax
Δ quantity	Regular	-7.2%	-60.8%	-61.1%
Δ price	Diet	-2.8%	13.5%	14.3%
	Regular	0.4%	33.1%	43.1%
Δ margin	Diet	-0.5%	-1.5%	-1.5%
	Regular	0.9%	6.2%	-37.7%
Δ adv. exp.	Diet	-1.0%	-3.1%	-3.2%
	Regular	-100.0%	-56.8%	-80.0%
	Diet	-16.2%	-19.5%	-37.2%
Δ profits		-1.2%	-6.8%	-10.4%
Compensating variation		-2.8%	-8.6%	-9.2%
Tax revenue		-	4.6%	7.4%
Δ surplus	-4.0%	-10.9%	-12.3%	

Summary

Estimate an equilibrium model in which firms compete through their pricing and advertising decisions

Show advertising has spillovers to other brands in market, and consumer sensitivity to advertising and price changes are positively correlated

Both a specific and ad valorem tax lead to lower advertising of taxed brands and modest change in advertising of non-taxed brands

- Larger response under ad valorem tax consistent with lower margins under this tax

Model predicts heterogeneous patterns of consumer response driven by differential advertising exposure

Advertising restriction leads to modest reduction in quantity

The end

Hopefully you've gained some ideas for how we can use economic models combined with data and econometrics to learn about the impacts of policies, and how we can design them better

Extra slides

Highest adv exp shows, 2010-2016 Свас

	Both				Coca Cola									Pepsi		
	Exp	Rank	$£ /$ slot	Exp	Rank	$£ /$ slot	Exp	Rank	$£ /$ slot							
	$(£ m)$			$(£ m)$			$(£ m)$									
The X Factor	6.2	1	1463	5.6	1	1480	0.6	2	1312							
Coronation Street	4.3	2	1076	4.0	2	1128	0.4	6	723							
Emmerdale	3.8	3	1086	3.3	3	1130	0.5	4	871							
Hollyoaks	3.7	4	338	3.1	4	336	0.6	1	349							
Britain's Got Talent	3.4	5	1716	2.9	5	1836	0.5	5	1208							
I'm A Celebrity	2.5	6	2040	2.4	6	2096	0.1	21	1332							
The Jeremy Kyle Show	2.4	7	217	2.1	7	216	0.3	12	227							
Come Dine With Me	1.9	8	221	1.7	8	229	0.3	11	181							
This Morning	1.8	9	180	1.6	9	181	0.2	18	171							
Big Brother	1.6	10	296	1.4	10	297	0.3	9	294							
Sunday 9Pm Movie	1.5	11	378	1.2	12	373	0.3	8	399							
Friends	1.0	15	172	0.7	25	179	0.3	7	156							
Uefa Champions League	0.9	18	596	0.4	45	483	0.5	3	708							
The Simpsons	0.7	28	228	0.4	40	174	0.3	10	442							

Highest adv exp stations, 2010-2016 Свак

	Both				Coca Cola				Pepsi		
	Exp	Rank	$£ /$ slot	Exp	Rank	$£ /$ slot	Exp	Rank	$£ /$ slot		
	$(£ m)$			$(£ m)$			$(£ m)$				
Itv1	53.4	1	466	47.2	1	473	6.3	1	417		
C4	24.8	2	203	20.0	2	203	4.8	2	201		
C5	11.4	3	165	9.4	3	165	2.0	3	168		
Itv2	6.1	4	494	5.3	4	504	0.8	5	432		
E4	4.4	5	268	3.6	5	262	0.8	4	295		
Pick	2.4	6	228	2.1	6	227	0.3	8	236		
Dave	1.5	7	170	1.3	7	171	0.2	11	164		
Sky Sports	1.5	8	78	1.0	10	65	0.5	6	127		
Sky 1	1.5	9	255	1.2	8	231	0.3	9	411		
Quest	1.2	10	131	1.1	9	134	0.1	13	112		
Film4	0.7	16	206	0.5	18	205	0.2	10	208		
Itv4	0.6	17	173	0.2	35	171	0.4	7	174		

Highest adv exp time slots, 2010-2016 Сваск

	Both				Coca Cola				Pepsi		
	Exp	Rank	$£ /$ slot	Exp	Rank	$£ /$ slot	Exp	Rank	$£ /$ slot		
	$(£ m)$			$(£ m)$			$(£ m)$				
Week2000-2230	32.0	1	253	27.0	1	254	5.0	1	245		
Week1800-2000	15.5	2	170	13.1	2	173	2.4	2	156		
Sat2000-2230	13.2	3	431	11.6	3	443	1.7	4	367		
Week2230-0100	11.2	4	87	8.9	4	84	2.3	3	100		
Sun2000-2230	8.7	5	305	7.5	6	315	1.2	5	255		
Sat1800-2000	8.6	6	363	7.9	5	385	0.6	7	212		
Week1600-1800	5.1	7	108	4.4	7	110	0.8	6	96		
Week0930-1200	4.6	8	61	3.9	8	62	0.6	8	53		
Week0600-0930	3.9	9	49	3.4	9	50	0.5	11	44		
Sun1800-2000	3.5	10	191	3.0	10	198	0.5	12	155		
Sat2230-0100	2.5	12	97	2.0	12	93	0.5	9	118		
Sun1600-1800	1.5	16	116	1.0	16	96	0.5	10	200		

State space

Payoff relevant state variable is \mathcal{A}_{t}, the joint distribution of brand exposure in the population

Assume firms:

- Use mean stock, $A_{b t}=\mathbb{E}\left[A_{i b t}\right]$ as state variable in dynamic game
- And they expect all quantiles of long-run average stock distribution to scale in $A_{b t}$

Leads to very little prediction error:

$$
\mathbb{E}\left[q_{j t}\left(\mathbf{p}_{t}, \mathcal{A}_{t}\right)\right]-\tilde{q}_{j t}\left(\mathbf{p}_{t}, \mathbf{A}_{b t}\right)
$$

State-to-state transitions

Transition function specifies probability over next period's advertising stock, given its current value and expenditure, $f\left(A_{b t+1} \mid A_{b t}, e_{b t}\right)$ We
estimate:

$$
A_{b t+1}-\delta A_{b t}=\lambda e_{b t}^{\gamma}+\nu_{b t}
$$

As $T_{b k}^{*}=g\left(\mathbf{w}_{k}, \rho_{k}\right) e_{b t}^{\gamma}, \lambda=\mathbb{E}\left[g\left(\mathbf{w}_{k}, \rho_{k}\right)\right]$
We use a discrete grid for $A_{b t},\left\{A_{1}, \ldots, A_{K}\right\}$, where:

$$
\begin{gathered}
\operatorname{Pr}\left(A_{b t+1}=A_{k^{\prime}} \mid A_{b t}=A_{k}, e_{b t}\right)=\int_{A_{k-1}^{\prime}}^{A_{k^{\prime}}} f_{\nu}\left(A_{b t+1}-\delta A_{k}-\lambda e_{b t}^{\gamma}\right) \frac{A_{b t+1}-A_{k-1}}{A_{k^{\prime}}-A_{k^{\prime}-1}} d A_{b t+1}+ \\
\int_{A_{k}^{\prime}}^{A_{k^{\prime}+1}} f_{\nu}\left(A_{b t+1}-\delta A_{k}-\lambda e_{b t}^{\gamma} \frac{A_{k^{\prime}+1}-A_{b t+1}}{A_{k^{\prime}+1}-A_{k^{\prime}}} d A_{b t+1}\right.
\end{gathered}
$$

