The gender pay gap amongst high educated workers: evidence from academia

> Rachel Griffith with Karim Chalak (Manchester) and John Gathergood (Nottingham)

> > April 2025

The gender pay gap is highest for high earners Whole UK Economy

Source: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/genderpaygapintheuk/2024

Motivation

- Reductions in the gender pay gap over the past 25 years due to
 - increased education attainment by women, who are now on average more highly educated than men
 - increased minimum wages, which has brought down the gender pay gap at low wages
- But there has not been comparable progress for highly educated women, where gender pay gaps remain large
- Gender gaps in pay have substantial consequences for inequalities
- And suggest that the talents of women are not being used in the most productive way possible

Motivation

- The literature points to the large gender gaps arising in occupations where there are higher returns for longer/less flexible hours (Goldin, Bertrand and others)
 - if women place higher value on time at home with young children then they may be willing to trade lower pay for more flexible work hours
- Some occupations have a non-linear or convex wage structure, where workers are not close substitutes for each other, so there is high demand (and compensation) for an individual's time
 - e.g. trial lawyers and consultants are occupations that require long hours, where workers are not close substitutes for each other, pharmacists are close substitutes so hours can be more flexible
- Women do less well in occupations that require long and inflexible hours to remain on the "fast track", because they are difficult to combine with family commitments

Our contribution

- We study the determinants of the gender pay gap amongst academics in the UK
- This is an interesting setting because
 - many high paid workers who have all invested heavily in human capital
 - large and persistent gender pay gaps in some disciplines but not in others
 - many people doing a similar job, but requirements for success and the reward structures differ across disciplines
 - we have high quality data on pay and outputs for the population of workers
 - we can identify research active academics
 - an interesting industry in itself

Large and persistent gender pay gap

all academic (teaching and research) staff, all disciplines, all institutions

Data on pay

- Salary of all academic staff in UK higher education institutions
 - from Higher Education Statistics Agency (HESA) staff records
 - academic years 2012-13 2022-23
 - all institutions, all disciplines
 - around 200,000 individuals in each year
 - salary, hours and contract (FTE, full/part-time; permanent/fixed term)
 - function: teaching, research, teaching and research (T&R)
 - discipline, institution, age, gender, ethnicity
 - parental leave
 - whether submitted to REF2014 and REF2021

The pay gap arises in research

32% of staff on teaching contracts

68% on research contracts

We study research active academics

- academics submitted to REF2021 or REF2014
- work in one of 56 research oriented institutions (research income is >15% income)
- work in one of 23 disciplines that publish in journals
 - includes all of Panels A (Medicine, Health, Life Sciences), B (Physical Sciences, Engineering, Maths), and C (Social Sciences)
 - excludes Panel D (Arts and Humanities)
- around 35,000 individuals submitted to REF2014
- around 45,000 individuals submitted to REF2021
- around one-third are female

Gender pay gap varies across discipline

Highest gender pay gap

Lowest gender pay gap

The wage setting process in academia

- Universities earn revenue from high quality research
 - high quality research attracts research funding and overseas students
 - the surplus that a university can generate from high quality research differs by discipline depending on costs, attractiveness of course, etc.
- Researchers differ in their productivity in producing high quality research
 - ▶ individuals differ in their ability and effort to produce high value outputs
 - disciplines differ in the research expectations and reward structures, with some having large returns to "big" publications, others having more incremental structure of reward, ...
- Researchers and the university bargain over pay, depending on
 - researchers' outside option
 - individual differences in mobility, risk preferences, ...

Data on disciplines

- Surplus
 - from HESA finance, student and staffing records
 - total revenue (tuition + research) total variable costs (excl academic salary) per academic staff
- Outside option
 - Longitudinal Educational Outcomes (LEO): matches HMRC (tax records) earnings and employment data with HESA student records
 - earnings for students in each subject area five years after graduation (UK domiciled first degree graduates from HEIs in Great Britain, 2019/20 tax year)
 - Share of staff that are international
- Publication norms and expectations
 - Effort required to get a high valued publication
 - concentration of publications by top academics (staff in top 3 departments by REF2021 GPA), compared to publications by staff outside top 3
 - average page length, time to publish, rejection rates, number of publications per person per year

Surplus per academic staff

Outside option: % staff that are international

Publication norms: the top Journal

- Consider all papers submitted to REF2021
 - what % were submitted to each Journal
 - compare % in departments that got the highest % of 4* grades and All departments
- In Economics the Journal that is most common amongst the top 3 departments is The American Economic Review

% REF2021 outputs in top journal

in top 3 departments

Publication norms - the top Journal

- In contract, in economics if we look at submissions from all departments to The American Economic Review
- they represent 5.7% of submissions
- compared to 13.9% in the top 3 deptments
- a difference of 8.2 p.p.

Difference in % outputs in leading journal

Top 3 departments minus All

Difference in % outputs in Top 5 Journals

Top 3 departments minus All

Publication norms

In addition, large differences across journals in:

 rejection rates, decision times, article page lengths, number of articles published per year

UoA	Highest % journal	Top 3	All	diff
 8. Chemistry 16. Economics 9. Physics 5. Biology 18. Law 	Journal Of The American Chemical Society American Economic Review Physical Review Letters Nature Communications Oxford Journal Of Legal Studies	15.1 13.9 13.0 10.3 9.5	17.5 5.7 16.0 11.3 3.9	-2.3 8.2 -3.0 -1.0 5.6
1. Medicine	Nature Communications	9.1	7.8	1.3

Data on individual research outputs

- We have the universe of research active academics
- We construct the universe of their publications and citations
 - take list of outputs submitted to REF2021 and REF2014
 - ▶ 89% of outputs have a DOI, 91% of these in Scopus
 - use Scopus to identify the submitting author(s)
 - get the institutional affiliation for all authors and match to the institution that submitted the output
 - get the full publication histories of all these authors from Scopus
 - use Gender Guesser and GenderIO to identify whether male or female
 - year of first publication gives an estimate of age
- Construct total citations, H-index, number in top journal, top 5, top 20 journals, and other measures of outputs

How important are outputs for salary

We are interested in learning about features of the joint distribution of output, salary and other characteristics

• for example, β , the elasticity of salary wrt output

$$Y_i = X'_i\beta + W'_i\gamma + e_i$$

- i: individuals
- Y_i: salary
- X_i : vector of outputs

 W_i : vectors of individual characteristics observed in both salary and output data

ei: idiosyncratic error

- We observe (Y_i, W_i) for the population
- We observe (X_i, W_i) for the population
 - W: discipline, institution, gender, age

Imputing outputs into salary data

- We impute a value of outputs, \tilde{X}_i , for every individual in the salary data
 - average of output over nearest (age-wise) neighbours who share same (female, institution, discipline)
- We observe actual age in salary data
- In output data we observe year of first publication
 - we estimate age assuming a minimum age at year of first publication that varies by discipline (but not within discipline)
 - we select this minimum age to match a set of moments in the salary and outputs data (means, variances and covariances of X, W, age)

Empirical model of pay

$$log(Y_i) = \tilde{X}_i \beta_d + W'_i \phi_d + Z'_i \gamma_d + e_i$$

- run separately for each discipline (d)
- W: common covariates (age, gender), Z: covariates just in Y data
- We are interested in
 - estimates of β , the elasticity of salary wrt output
 - ▶ how important differences in outputs (*X*) are to explain the gender pay gap:

$$\left(\overline{Y^{F}} - \overline{Y^{M}}\right)_{d} = \left(\overline{X^{F}} - \overline{X^{M}}\right)_{d} \hat{\beta}_{d} + \left(\overline{W^{F}} - \overline{W^{M}}\right)_{d} \hat{\phi}_{d} + \left(\overline{Z^{F}} - \overline{Z^{M}}\right)_{d} \hat{\gamma}_{d}$$

where $\overline{X^F}$ and $\overline{X^M}$ denote the mean of a variable across females and males

$$\frac{\left(\overline{X^{\mathsf{F}}}-\overline{X^{\mathsf{M}}}\right)\widehat{\beta}}{\left(\overline{Y^{\mathsf{F}}}-\overline{Y^{\mathsf{M}}}\right)}$$

Elasticity of salary wrt H-Index

Elasticity of salary wrt Top 5

Contribution of H-index

- the elasticity of salary wrt to H-index is low in economics
 - ▶ so gender differences in H-index don't contribute much to gender pay gap

Contribution of H-index

Gender difference in H-index

- the elasticity of salary wrt to H-index is higher in psychology ►
 - so lower gender differences in H-index contribute more to gender pay gap

Contribution of Top 5

- the elasticity of salary wrt to Top 5 publications is high in economics
 - so gender differences in Top 5 contribute to the gender pay gap

Contribution of Top 5

- the elasticity of salary wrt to Top 5 is lower in chemistry
 - so a higher gender differences in Top 5 does not contribute to gender pay gap

Contribution to Gender Pay Gap in Economics

Pay gap	$lo\overline{g(Y)}^F - lo\overline{g(Y)}^M$	-0.178	
of which:			
Outputs	of which:	-0.053	31.5%
H-index Top 5	$ \widehat{\beta^{H}} \left(\overline{In(H)^{F}} - \overline{In(H)^{M}} \right) = $ $ \widehat{\beta^{T5}} \left(\overline{T5^{F}} - \overline{T5^{M}} \right) = $	-0.003 -0.053	1.8% 29.7%
Age (experience)	$\widehat{\beta^{A}}\left(\overline{A^{F}}-\overline{A^{M}}\right)+\widehat{\beta^{A^{2}}}\left(\overline{(A^{2})^{F}}-\overline{(A^{2})^{M}}\right)$	-0.061	34.5%
Unexplained	$\widehat{eta^F}$	-0.060	34.0%

Contributors to the pay gap

Contributors to the pay gap, as % of total

Discussion

- Differences in outputs explain around a quarter of pay gap, more in some disciplines than others
- Economics differs from other disciplines in the
 - confluence of high surplus, high outside options, and publication norms that give high rewards to "big" papers that require large investments
 - the combination of differences in output levels and a high elasticity of salary wrt output explains a substantial portion of the gender pay gap
 - gender differences in Top 5 publications are higher in Maths and Chemistry the elasticity of salary wrt top 5 is low in these disciplines
 - the elasticity of salary wrt Top 5 is also sizeable in Computer Science, but the difference in number of Top 5 is small
- However, outputs do not explain the whole gender pay gap
- More work to do to estimate robust bounds on elasticities, include other covariates and utilising the panel

Approaches to learn about β

- 1. Impute a value of X into Y data
 - nearest neighbour, sample, ...
- 2. DGM: D'Haultfoeuille, Gaillac and Maurel (2024) "Partially linear models under data combination" REStudies
 - $\beta = \rho_{XY} \frac{\sigma_Y}{\sigma_X}$, we can get bounds on ρ_{XY} using observed ρ_{XW}, ρ_{WY}
 - ▶ DGM provides a method to impose constraints, such as $\beta_{YX} \ge 0$, and on R^2 , which help tighten the bounds
- 3. Manski and Tamer (2002) bounds
 - allows us to exploit that we have the population in both X and Y data
 - \blacktriangleright for each observed value of X what is the min and max of Y, what β are consistent with that range

DGM bounds on elasticity of salary wrt H-index imposing $\beta^{H} \ge 0, \beta^{F} \le 0, R^{2} > \lambda R_{I}^{2}$

"imputed OLS" refers to estimates we get with OLS using imputed data.

"DGM" the dash lines show the 95% confidence interval obtained in table above, the two dots are lower and upper bounds of the set.

DGM bounds on elasticity of salary wrt Top 5 imposing $\beta^{H} \ge 0$, $\beta^{F} \le 0$, $R^{2} > \lambda R_{l}^{2}$

"imputed OLS" refers to estimates we get with OLS using imputed data.

"DGM" the dash lines show the 95% confidence interval obtained in table above, the two dots are lower and upper bounds of the set.

EXTRA SLIDES

Parental leave

research staff aged 29-40

- ▶ 5% of females aged 31-40 take maternity leave (1.4% aged 21-30, 0.7% aged 41-50)
- 0.8% of males aged 31-40 take parental leave (0.2% aged 21-30, 0.3% aged 41-50)

Male pay is higher than female at all quantiles

research staff all universities

Source: authors' calculations using HESA data 2012-2021

Surplus per FTE and Outside option

Source: HESA and LEO

Share of female academic staff

- All academic staff
 - ▶ in 2022-23 around 49% of staff are female, slightly up from 45% in 2012-13
 - this increase is almost entirely due to increase in staff on teaching contracts (from 27% to 37% of academic staff)
 - within teaching share of females has declined slightly from 48% to 46%
 - within research increased from 40% to 42%
- Staff submitted to REF2021
 - 33% were female
 - less than 25% in physics, maths, engineering, economics, to more than 50% in public health, social policy and education
 - share similar in REF2014 and REF2021

Number of males and females

Gender pay gap 2012 and 2022

Gender pay gap sizeable reductions

Contributors to the pay gap, as % of total

We focus on research active staff

- ▶ We include all institutions with research income >15% of income
 - 56 institutions
 - ▶ 58% of staff, 66% of research active staff
 - 73% of outputs submitted to REF2021
- We exclude teaching focused institutions and specialist music, arts and agricultural institutions

We focus on disciplines that publish in journals

23 disciplines

- Medicine, Health, Life Sciences (REF Panel A: UoA 1-6)
 - Medicine, Public Health, Allied Health Professions, Psychology, Biology, Agriculture
- Physical Sciences, Engineering, Maths (REF Panel B: UoA 7-13)
 - ► Earth Sciences, Chemistry, Physics, Mathematics, Computer Science, Engineering, Architecture
- Social Sciences (REF Panel C: UoA 14-24)
 - Geography, Archaeology, Economics, Business, Law, Politics, Social Policy, Sociology, Anthropology, Education, Sport Sciences
- Panel D: Arts and Humanities (UoA 25-34)
 - Area Studies, Modern Languages, English Literature, History, Classics, Philosophy, Theology, Art and Design, Performing Arts, Media Studies